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Abstract

At the Technical University Graz (TUG), Austria, the Global Positioning System (GPS) has
been used for time transfer purposes since the early 80's and from that time on local meteorological
parameters are recorded together with each measurement (satellite track). The paper compares
the tropospheric corrections (delays) obtained from models usually employed in GPS receivers and
those using locally measured meteorological parameters.

INTRODUCTION

In order to calculate the path delay of the signals received from GPS satellites - as with

any one-way system - one has to know the satellite and user positions with high accuracy

and furthermore has to apply corrections for the propagation delays in the ionosphere and

troposphere[ll. In the case of time laboratories the GPS antenna coordinates are usually known

with high accuracy in a common reference frame and post-processed ephemerides are accessible

within a few weeks from different agencies and the ionospheric delay can be measured using

dual-frequency receivers[ 2,al. The tropospheric delay is - for the frequencies used here -

frequency-independent and can therefore not readily be established. Different models are

employed in GPS timing receivers using general empirical atmospheric models which only

take into account the station height and the elevation of the satellite. For increased accuracy

models b.ased on actually measured local surface temperature, atmospheric pressure and relative

humidity may be used. At the Technical University Graz (TUG), Austria, the Global Positioning

System (GPS) has been used for time transfer purposes since the early 80's and from that

time on together with each measurement (satellite track) local meteorological parameters are
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recorded.The papercomparesthe troposphericdelaysobtainedfrom modelsusuallyemployed
in GPS receiversand thoseusing locally measuredmeteorologicalparameters. Resultsare
givenfor measurementsdoneaccordingto the GPScommon-viewtrackingschedulesissuedby
the BureauInternational desPoidset Mesures(BIPM) during the years1991and 1992.

TROPOSPHERIC DELAY AND USED MODELS

The tropospheric excess delay Dr is given by

10-6 f N(s)ds (1)DT-- c

where N is the refractivity given by (n- 1)106 with n the index of refraction of air and c is the

velocity of light in vacuo and the integral is evaluated along the signal pathI41. For frequencies

below 30 GHz N is given by

P 4S10_22)N = 77.6( + (2)

where T is the absolute temperature in Kelvin, p is the total atmospheric pressure and e is the

partial pressure of water vapour both in millibarst4,Sl. This form is widely used and accurate

within 0.5% for the range of atmospheric parameters normally encountered[41. The first term

in Equation 2 is called the dry component Nd and the second term the wet component N_ and
thus with

N = Nd + N_ (3)

the tropospheric delay according to Equation 1 is composed of a dry component and a wet

component due to dry air and water vapour effects, respectively, and can be written in the

following form

DT = DTd + DTw -- 10_6 /
10-6 Nd(s)ds + -- N_(s)ds (4)

c c

The main part of the total delay results from the dry component but the remaining part

resulting from the wet component is highly variable due to the high variability both temporally

and spatially of the water vapour concentration. Usually the integrals are evaluated in zenith

direction and from the obtained zenith delay D_ the delay DT for arbitrary elevation angles is

computed by means of mapping functions MF[6, 71. Thus the tropospheric delay DT is given by

DT = D_d × MFd + D_ x MF_o (5)

The accuracy of the calculated tropospheric delay depends upon the degree to which the

atmospheric model used to determine the refractivity profile N(s) reflects local atmospheric

232



conditions[71.Modelsare employedwhicheither usea generalempiricalreferenceatmosphere
only requiring the stationheightand the respectiveelevationangleto the satellite to calculate
the tropospheric delay or which are based on surface measurements of the refractive index

thus requiring the measurement of the local meteorological parameters i.e. temperature,

atmospheric pressure and relative humidity. Models of the first type are usually implemented

in GPS receivers. The model used in receivers of NBS type (NBS model)[31, the model used

in STI TTS-502 receivers (STI model)lSl and the model recommended in the STANAG Doc.

4294 (STANAG model)[81 will be compared with models of the second type namely the ones

by Hopfieldlgl, Saastamoinen[91 and Chao[10,111. Of the latter models the first two are widely

used within the geodetic communitytlZl and the last one was developed by the Jet Propulsion

Laboratory (JPL) and is employed in the original Master Control Stations (MCS)[I1]. In the

following the Hopfield model will be used as reference. Apart from the tropospheric models

investigated in this paper there exist many other models. The main reason for that is the

difficulty in the modelling of the water vapour content[91.

DATA AND RESULTS

Table 1 gives the tropospheric delays in zenith direction for the above mentioned models at Graz

(h = 540 m) whereby for the Hopfield, Saastamoinen and Chao models average meteorological

conditions (T=ll°C, p = 955 mbar, RH = 70%) computed from the data of 1991 and 1992

(see Figs. 5 _ 10) are used.

Table 1 Tropospheric delays in zenith direction

for average meteorological conditions

(T----°C, p : 955 mbar, RH : 70°7o) at Graz (h ---- 540 m)

Tropospheric Delay in ns

Model Dry Comp. Wet Comp. Dry Comp. + Wet Comp.

NBS

STI

STANAG

Hopfield
Saastamoinen

Chao

7.27

7.12

0.31

0.36

6.73

7.33

7.66

7.58

7.56

7.48

The dependence of the dry component on temperature and atmospheric pressure and the

dependence of the wet component on temperature and relative humidity of the tropospheric

zenith delay computed by means of the Hopfield model are shown in Fig. 1 and Fig. 2,

respectively. Indicated are the values for average conditions at Graz. The high variability of

the wet component leading to large contributions in hot and wet climates can clearly be seen

from Fig. 2. The mapping functions for the dry and wet components for this model are depicted

in Fig. 3. The differences between the tropospheric delays given by the Hopfield model and the

other models as function of the elevation angle - thus showing the influence of the different

mapping functions used by the different models - based on the values given in Table 1 is
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plotted in Fig. 4. The large differences for low elevation angles caused by the different mapping

functions are usually not relevant for the GPS common-view time transfer because in practice

also for common-view time transfers over long distances the elevation angles usually employed

are greater than 15 degrees (see Fig. 11). Because an elevation angle of about 15 degrees is

the limit for some receivers using a type of choke ring groundplane for the antenna to reduce

multipath effects this elevation angle was chosen as limit in the comparisons. The temperature,

atmospheric pressure and relative humidity for the GPS measurement times (satellite tracks)

according to the BIPM common-view schedules are plotted in Figs. 5 _ 10 whereby the single

measurements and daily means are given for each meteorological parameter. Fig. 11 shows

the elevation angles at which the common-view time transfer measurements according to the

different BIPM common-view schedules were performed in 1991 and 1992. The tropospheric

delays computed by means of the Hopfield model and NBS model for this period are plotted

in Figs. 12 and 13. For low elevation angles a change by 1 degree - this is the resolution

of the old format for GPS data exchange which in the new format has been changed to 0.1

degree[t41 - already causes large variations in the tropospheric delays. For the same period

means over seven days of the differences between the Hopfield model and the other models

are shown in Fig. 14 revealing model dependent offsets and seasonal patterns. To explain the

differences between 1991 and 1992 one has to look at the meteorological parameters and the

elevation angles for this period (see Figs. 6 and 8 and Fig. 11). The differences for 1991

between the Hopfield model and the ones by Saastamoinen, Chao, NBS, STI and STANAG

for each satellite track are plotted in Figs. 15 _ 19 and daily means of the same differences

are shown in Fig. 20 and Fig. 21, respectively.

CONCLUSION

Models simply using the station height and the elevation angles to the satellites observed are

easy to implement and therefore widely used. The three models investigated i.e. the NBS

model, the STI model and the STANAG model give different tropospheric corrections for

the zenith direction and use different mapping functions causing differences of up to several

nanoseconds. Therefore employing models of this type the use of the same model in all

timing receivers is recommended[14aSl. Tropospheric corrections obtained by these models and

models using locally measured meteorological parameters differ by up to several nanoseconds.

By averaging - for example the use of daily means - as usually done in GPS time transfer

practice these differences are greatly reduced (see Fig. 21). Employing models which use

locally measured meteorological data spatial and temporal variations of the refractive index

are taken into account, but there are still differences for the single measurements of up to

about one nanosecond between the models investigated (see Fig. 16). For daily means these
differences are below one nanosecond, but one has to consider that these are still differences

between models. A problem with the use of the latter models is that data are needed for the

calculation of the tropospheric delay which are not provided by the GPS receivers itself and

that the uncertainty of estimating the refractive index from local surface measurements may
cause additional measurement noise due to measurement uncertainties and model deficiencies.

Delay stabilities of GPS time transfer receivers now in use are in general of the order of some

nanoseconds. Assuming the use of receivers of highest delay stability and asking for accuracies
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of one nanosecond or even better for GPS time transfers over long distances one has to use

models based on actual meteorological parameters. To estimate the accuracy of tropospheric

corrections obtained by models using surface measurements these models and those employing

more refined techniques such as the use of data provided by water vapour radiometers should

be compared.
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QUESTIONS AND ANSWERS

Tony Liu, The Aerospace Corporation: I have a question as to whether you have considered

using water vapor radiometers in your analysis. If you have, what success or problems have

you encountered?

Dieter Kirchner: No, and the reason is very simple. The cost for a water vapor radiometer

is several times the cost of a GPS receiver. And this would cause a problem for the general

use. Of course for evaluation, it would be of interest. But we only compared models with each
other and not models with in situ measurements.

Pat Romanowski, Allen Osborne Associates: I just have a question as to the distribution

that you showed when you were comparing the different models and the differences. And I

notice that they were skewed to one side. And I was wondering if you could comment on that.

In most cases; I believe there was only one case that was an exception.

Dieter Kirchner: It is very easy to comment. This is a very general model which makes

general assumptions for the refractivity; it uses a reference atmosphere. And the offset here is

simply given by the figure with which you start at mean sea level. So it is simply which model

do you use for your general model.

Pat Romanowski: Well, the point I want to make was the skewness of the data. For instance,
it doesn't seem to be -

Dieter Kirchner: Okay, this is simply a yearly effect. This difference here between our
reference model which takes into account the measured values at the surface and this model

which takes global average and a time average cannot take into account the unit change of

humidity and air pressure; and therefore, you see the different seasons; you see the winter,

spring, summer and fall, and winter again.

Pat Romanowski: Are there actually two models represented in the graph?

Dieter Kirehner: In the graph is the difference between the Hopfield(?) Model and the NBS

Model.

Pat Romanowski: And my question is why is the difference so terribly one sided?

Dieter Kirchner: Now I understand, I am sorry. You are thinking of this density distribution;

and this is because most of the elevation angles are around here; and we have only a few

elevations which are low elevations. And the differences are of course larger for the low
elevations. And therefore most of the measurements are done here.

Pat Romanowski: The elevation of satellites? Okay, thank you.

j
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